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Abstract

We perform large-eddy simulations (LES) of the flow past a scale model of a complex building. Calculations are accom-
plished using two different methods to represent the edifice. The first method employs the standard Gal-Chen and Somer-
ville terrain-following coordinate transformation, common in mesoscale atmospheric simulations. The second method uses
an immersed boundary approach, in which fictitious body forces in the equations of motion are used to represent the build-
ing by attenuating the flow to stagnation within a time comparable to the time step of the model. Both methods are imple-
mented in the same hydrodynamical code (EULAG) using the same nonoscillatory forward-in-time (NFT) incompressible
flow solver based on the multidimensional positive definite advection transport algorithms (MPDATA). The two solution
methods are compared to wind tunnel data collected for neutral stratification. Profiles of the first- and second-order
moments at various locations around the model building show good agreement with the wind tunnel data. Although both
methods appear to be viable tools for LES of urban flows, the immersed boundary approach is computationally more effi-
cient. The results of these simulations demonstrate that, contrary to popular opinion, continuous mappings such as the
Gal-Chen and Somerville transformation are not inherently limited to gentle slopes. Calculations for a strongly stratified
case are also presented to point out the substantial differences from the neutral boundary layer flows.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recent world events have heightened society’s awareness of its vulnerability to the release of chemical and
biological agents either through intentional or inadvertent actions. Of particular concern is the release of these
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agents in heavily populated urban areas. Thus it becomes a matter of some urgency to be able to detect and
forecast the transport and diffusion of hazardous substances in urban areas for effective evacuation and treat-
ment strategies. However, modeling the flows in urban areas around many buildings of different sizes and
shapes is an extremely complex problem which taxes the numerical simulation capabilities of both the mete-
orological and engineering communities. Current approaches to the problem are varied [1], from very simple
Gaussian plume semi-empirical estimates through a hierarchy of CFD (computational fluid dynamics) models,
with sophisticated large eddy simulations (LES) at the upper end. Recent LES by Liu et al. [2] and Cui et al. [3]
are representative of computational studies of neutral planetary boundary layer (PBL) flows past idealized
urban street canyons. Both works assume explicit internal boundaries to represent the buildings, while relying
on finite-element [2] and finite-volume discretizations [3] of the governing equations.

In general, numerical modeling of natural urban flows is still in its infancy, and because of the tremendous
computational burden involved in modeling realistic urban structures, it is important to carefully consider
computational efficiency versus accuracy tradeoffs of candidate modeling approaches. In this paper we report
on a systematic numerical study of neutrally stratified boundary layer flow over a single complex structure. A
unique aspect of our report is a thorough comparison of the model results to independent measurements in a
wind tunnel. The structure used is a scale model of the Pentagon building, but the results obtained carry over
to other complex constructions which may be embedded in any neutrally stratified urban environment. An
example of stratified flow is also included for comparison to the neutral wind tunnel case. The ultimate goal
of this research is to develop and identify reliable tools for quantifying the air flow past urban structures under
various meteorological conditions.

We conduct building-resolving LES using two distinct methods to represent the edifice. The first method
employs the Gal-Chen and Somerville terrain-following coordinate transformation [4] – a standard vertical-
coordinate transformation used in many mesoscale atmospheric simulations. In this method, the building is
effectively treated as orography, with the resulting slopes truncated according to the adopted grid resolution.
The second method uses the immersed boundary approach – originated by Peskin in the area of computa-
tional biomechanics [5,6] – in which fictitious body forces in the equations of motion are introduced to rep-
resent the internal boundaries; see [7] for a recent review. The particular technique employed here adapts the
feedback forcing of Goldstein et al. [8], with implicit time discretization admitting rapid attenuation of the flow
to stagnation (within the building structure) in OðdtÞ time comparable to the time step dt of the model.

Both methods are implemented in the same hydrodynamical code EULAG1 widely documented in the lit-
erature; cf. [12–15] for recent developments and reviews. The EULAG’s underlying numerics are the NFT
schemes2 based on the MPDATA transport algorithms [19,18,20]. The solutions use two different methods
for representing the building, but with identical numerics otherwise, and are compared to each other and
to wind tunnel data collected for neutral stratification. Profiles of first- and second-order moments at various
locations around the building are analyzed, subsequently leading to a synthetic assessment of the efficacy of
the two methods. Both approaches show good agreement with the data, and both appear viable tools for LES
of urban flows. However, for the case investigated here, the immersed boundary method seems to be slightly
more accurate overall and is computationally three times more efficient due to less stringent stability
requirements.

A particularly encouraging byproduct of our study is a demonstration that continuous mappings, such as
the Gal-Chen and Somerville transformation, are not inherently limited to gentle slopes – an established belief
in the geophysical CFD community – and can be quite effective in representing steep urban structures. We
point out the technical details of our approach that appear different from those used in traditional atmo-
spheric/oceanic codes, which may be responsible for our successful implementation of the terrain-following
coordinates as the orographic slopes approach the vertical. These (details) include particulars of the formula-
1 The name EULAG [9] alludes to the capability to solve the fluid equations in either an Eulerian (flux form [10]) or a Lagrangian
(advective form [11]) framework.

2 The term ‘‘nonoscillatory forward-in-time’’ was introduced in the late nineties [16,17] to label a class of second-order-accurate two-
time-level algorithms for fluids built on modern nonlinear advection techniques that suppress/reduce/control numerical oscillations
characteristic of higher-order linear schemes; NFT was meant to distinguish from classical centered-in-time-and-space linear methods; cf.
[18,12] for reviews and discussions.
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tion of the elliptic pressure equation, deriving pressure boundary conditions along curvilinear boundaries, and
selection of a suitable solver as well as calculation of transformation coefficients by finite-differencing funda-
mental tensor identities (e.g. ‘‘geometric conservation law’’) rather than evaluating them numerically from the
analytic formulae. Although the immersed boundary approach may simplify some of these aspects, it still
requires powerful elliptic solvers, as the implicit integrals of the fictitious body forcing translate to abruptly
changing coefficients in the elliptic pressure equation. These results have important implications for the use
of terrain-following coordinate systems with steep orography common in many geophysical applications.

The remainder of the paper is organized as follows. In the next section, the theoretical formulation of the
fluid dynamics model is outlined. The numerical approximations to the governing equations are discussed in
Section 3, with some potentially important technical nuances explained in appendices. Design of the numerical
experiments and the corresponding results are discussed in Section 4. Remarks in Section 5 conclude the
paper.

2. Fluid model: theoretical formulation

The nonhydrostatic model EULAG used in this study has been thoroughly documented in the literature;
for recent discussions see [13–15]. In general, EULAG admits several optional formulations of the equations
of motion [21,14]. Here, we are concerned with small-scale boundary-layer flows, and thus adopt the classical
incompressible Boussinesq approximation. Consequently, we invoke only a small portion of the model’s capa-
bilities, thereby simplifying the presentation as well as the computational procedures. The scope of this paper
justifies a concise, operator-like symbolic description of the governing equations. Wherever the operator sym-
bols refer to coefficient matrices, they merely indicate matrix operations but do not follow the formalism of
matrix algebra to the letter – for a thorough mathematical exposition refer to [13–15].

EULAG’s governing equations are formulated (and solved) in transformed time-dependent curvilinear
coordinates
ð�t; �xÞ � ðt;Fðt; xÞÞ; ð1Þ

with the assumptions that the coordinates ðt; xÞ of the physical domain are orthogonal and stationary – in par-
ticular, Cartesian in this paper – and the transformed horizontal coordinates ð�x; �yÞ are independent of the ver-
tical coordinate z. Given the transformation in (1), the governing equations considered here, can be compactly
written as follows
r � ðq��vsÞ ¼ 0; ð2Þ
dv

d�t
¼ �eGrp0 � g

h0

hb

� bvþDmðe;rvÞ � amv0 ð3Þ

dh0

d�t
¼ ��vs � rhe � bðh� hBÞ þDhðe;rhÞ � ahh

0 ð4Þ

de
d�t
¼ SðeÞ � be ð5Þ
where, because of the coordinate transformation, the physical and geometrical aspects are interdependent.
Insofar as the physics are concerned: v denotes the physical (i.e., measurable) velocity vector; h, q, and p refer
to potential temperature, density, and a density-normalized pressure, respectively; and g is the acceleration of
gravity (vector). The D terms appearing in the momentum and entropy equations (3) and (4) symbolize viscous
dissipation of momentum and diffusion of heat via, respectively, divergence of turbulent stresses and heat
fluxes, with corresponding eddy coefficients proportional to the square root of the ‘‘turbulent kinetic energy’’
e whose evolution in (5) symbolizes the standard prognostic ‘‘TKE’’ subgrid-scale model where all usual sinks
and sources were combined in the SðeÞ term; cf. [17,22] for details. Primes denote deviations from the hydro-
statically balanced ambient (i.e., environmental) state ve, he, and the subscript b refers to the Boussinesq ref-
erence state. The relaxation terms with coefficients a and b (functions of the coordinates), appearing on the
r.h.s. of (3)–(5), represent fictitious forces whose eventual role is to attenuate the solution to prescribed states
within the body of the building (denoted by the subscript B; vB ” 0) and in the vicinity of the open boundaries
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of the model, respectively. Notably, all relaxation and viscous terms in the momentum and entropy equations
represent parameterizations justified by expediency and, ultimately, by comparison with data.

The geometry of the coordinates in (1) enters the governing equations as follows: in the mass continuity

equation (2), q� � qbG with G denoting the Jacobian of the coordinate transformation; whereas in the momen-

tum equation (3), eG � ðo�x=oxÞ symbolizes the renormalized Jacobi matrix of the transformation coefficients;

r� � o=o�x�, and the total derivative is given by d=d�t ¼ o=o�t þ �v� � r, where �v� � d�x=d�t � _�x is the contravariant

velocity. Appearing in the continuity (2) and entropy (4) equations is the solenoidal velocity
�vs � �v� � o�x

ot
; ð6Þ
that follows [23] from the generic (tensor invariant) form of incompressible continuity equation
G�1 oq�

o�t
þr � ðq��v�Þ

� �
� 0: ð7Þ
The transformation
�vs ¼ eGTv: ð8Þ

relates the solenoidal and physical velocities directly. For further details of the metric and transformation ten-
sors as well as the formulation of the viscous and dissipative terms in the governing equations, the interested
reader is referred to [15] and references therein.

Following [14], the general dependence of �z on ðx; y; z; tÞ in (1) collapses to a similarity transformation
�z ¼ CðnÞ

n ¼ nðx; y; z; tÞ :¼ H 0
z� zsðx; y; tÞ

Hðx; y; tÞ � zsðx; y; tÞ
;

ð9Þ
where H and zs are the upper and lower surface elevations, respectively, H0 denotes the vertical extent of the
transformed model domain, and the function C conveniently admits a class of vertically stretched coordinates.
The transformation in (9) is a generalization of the classical terrain-following Gal-Chen and Somerville [4]
transformation. It has the computational advantage of separability into one- and two-dimensional fields. In
particular, the Jacobian of the transformation is given as
G ¼ dC

dn
on
oz

� ��1
o�x
ox

o�y
oy
� o�x

oy
o�y
ox

� ��1

� dC

dn

� ��1

G0Gxy ; ð10Þ
with
G0 �
on
oz

� ��1

¼ Hðx; y; tÞ � zsðx; y; tÞ
H 0

: ð11Þ
Throughout this paper, �x ¼ x, �y ¼ y and n ¼ �z; thereby employing the identity transformation in the horizon-
tal (viz. Gxy � 1). Furthermore, the upper boundary is stationary and flat (viz. H ” H0), and there is no vertical
stretching of the lower-boundary-fitted coordinate �z (viz. dC=dn � 1). The lower boundary is also stationary
but inhomogeneous, zs ¼ zsðx; yÞ, thereby reducing (9) to the classical case, standard in many atmospheric/oce-
anic models. In spite of the resulting mathematical simplifications, the actual EULAG program accommo-
dates (1) and (9) in their full generality. We retain the consistent notation for conciseness of forthcoming
discussions and ease of connection to earlier works.

3. Numerical approximations

Given (7), each prognostic equation that forms the Boussinesq system (3)–(5) can be written in two equiv-
alent forms, either as a Lagrangian evolution equation
dw
d�t
¼ R; ð12Þ
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or an Eulerian conservation law
3 Th
genera
oq�w
o�t
þr � ðq��v�wÞ ¼ q�R: ð13Þ
Here w symbolizes components of v as well as h 0 or e, and R denotes the associated r.h.s.
We approximate either (13) or (12) to second-order accuracy in space and time using the nonoscillatory

forward-in-time (NFT) approach – see [18,12] for reviews and discussions. The particular NFT algorithm
employed here can be formally written as
wnþ1
i ¼ LEið~wÞ þ 0:5dtRnþ1

i � ŵi þ 0:5dtRnþ1
i ; ð14Þ
where wnþ1
i is the solution sought at the grid point ð�tnþ1; �xiÞ, ~w � wn þ 0:5dtRn, and LE denotes a two-time-level

either advective semi-Lagrangian [11] or flux-form Eulerian [10] NFT transport operator, viz. advection
scheme.3 The calculations reported in this paper used exclusively the second-order-accurate, monotone
(FCT) [24], flux-form scheme MPDATA, the technical details of which are widely described in the literature;
see [19,18,20] and references therein. For the reader’s convenience and clarity of the following discussion, we
outline the functional form of MPDATA in Appendix A.

Subgrid-scale (SGS) forcings Dm, Dh and S – in (3)–(5), respectively – included in R are evaluated explicitly
and to first-order. This is justified because they enter the equations of motion only as a consequence of a sub-
grid-scale turbulence model, already as � Oðdx2Þ corrections. Technically, this eliminates the need for predict-
ing SGSn+1 in Rn+1 on the r.h.s. of (14), as SGSðwnþ1Þ ¼ SGSðwnÞ þOðdtÞ. Programming wise, the definition of
the auxiliary field ~w is expanded as ~w � wn þ 0:5dtðRn

rsv þ 2Rn
sgsÞ, while accounting only for the resolved forcing

Rrsv in Rn+1 on the r.h.s. of (14); cf. Sections 3.5.4 and 4.2 in [18] for discussion. The explicit first-order eval-
uation of SGS forcings improves the efficacy of the calculations. When required however, it can be extended to
a trapezoidal integration, employed for the resolved forcing Rrsv, by means of an outer iteration scheme [25].

The template algorithm (14) already incorporates the assumption that all prognostic variables are defined at
the same grid points �xi. This is important for the efficacy of the model; see [9] for a discussion. In EULAG we
allow two grid configurations: the unstaggered A-grid, where all variables are defined at the same positions,
and the staggered B-grid, where a pressure variable is staggered one-half grid interval in all directions with
respect to the other variables [26]. In either case, advection and diffusion modules mimick a staggered C-grid
with fluxes evaluated at fictitious cell-wall locations surrounding data points �xi, cf. Appendix A; whereas par-
tial derivatives o=o�x composing the Nabla operator r on the l.h.s. of (2) as well as in the pressure gradient and
convective-derivative terms, respectively, on the r.h.s. of (3) and (4) are approximated with standard second-
order-accurate finite-difference formulae. All calculations reported in this paper were performed on the A-grid.

Note that Eq. (14) represents a system implicit with respect to all resolved variables in (3) and (4), because
the velocity components, pressure, and potential temperature are assumed to be unknown at n + 1. For the
physical velocity vector v, it can be written compactly as
vi ¼ v̂i � 0:5dtðeGðrp0ÞÞi þ 0:5dtRiðv; ĥ0Þ; ð15Þ

where
Riðv; ĥ0Þ � �ðbvþ amðv� veÞÞi � g
1

h0

^̂h0i � 0:5dtððeGTvÞ � rheÞi
1þ 0:5dtðbþ ahÞi

; ð16Þ
with
^̂h0 � ĥ0 þ 0:5dtbðhB � heÞ; ð17Þ

accounts for the implicit representation of the buoyancy and relaxation forcings via (4), and the superscript
n + 1 has been dropped as there is no ambiguity. On grids unstaggered with respect to all prognostic variables,
e flux-form Eulerian transport operator LE invokes the multiplicative factor q*n/q*n+1 to account for time variability of the
lized density q* due to coordinate dependence on time, see [12] for discussion.
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(15) can be inverted algebraically (viz. locally) to construct expressions for the solenoidal velocity components
that are subsequently substituted into (2) to produce an elliptic equation for pressure
dt
q�
r � q� eGT½^̂v� ðI� 0:5dtbRÞ�1 eGðrp00Þ�

� �
i

¼ 0; ð18Þ
where eGT½^̂v� ðI� 0:5dtbRÞ�1 eGðrp00Þ� � �vs defined in (6). In (18), ^̂v combines all explicit parts on the r.h.s. of

(15) – so, bR denotes the resulting linear (homogeneous) operator acting on v – and p00 ” 0.5dtp 0; cf. [13] for the
complete development. Boundary conditions imposed on �vs � n, subject to the integrability conditionR

oX q��vs � ndr ¼ 0, imply the appropriate boundary conditions on p00 [13,14]; for additional particulars see
Appendix B. The resulting boundary value problem is solved – with accuracy to a judiciously specified thresh-
old kðdt=q�Þr � q��vsk < e, see [16] for a discussion – using a preconditioned generalized conjugate residual
GCR algorithm [27–29], a nonsymmetric Krylov subspace solver akin to the popular generalized minimum
residual GMRES scheme, [27,30]. Given the updated pressure, and hence the updated solenoidal velocity,
the updated physical and contravariant velocity components are constructed from the solenoidal velocities
using the transformations (8) and (6), respectively.

The detailed form of the transformation coefficients – i.e., the entries of eG appearing throughout (3), (8),
and (18) – was given in [13–15]. Here we only emphasize that – in contrast to the majority of atmospheric/oce-
anic models using the Gal-Chen and Somerville transformation – we evaluate the coefficients by differentiating
the Jacobians G0, defined in (11), rather than using direct differentiation of zs; see section 2.2 in [14] for an
exposition. This aims at satisfying the fundamental tensor identities [15,31] at the finite difference level. In
our experience, this approach minimizes the production of spurious vorticity at the curvilinear boundaries
and accelerates convergence of the elliptic solver.

4. Experimental setup

The wind tunnel experiment, Fig. 1, was conducted in the US EPA Meteorological Wind Tunnel at the
Fluid Modeling Facility; the laboratory setup is highlighted in Fig. 2. It employs a 1:200 scale model of the
building, with a large scale neutrally stratified ambient (free-stream) flow ve ¼ ðU 0; 0; 0Þ where U0 � 4 m s�1.
With the characteristic length scale of the model L = 2 m, this gives a Reynolds’ number Re � 5 · 105,
only two orders of magnitude lower than for natural atmospheric boundary layer flows. The experimental
Fig. 1. Smoke visualization of point source plume around 1:200 scale model in the Meteorological Wind Tunnel.



Fig. 2. Diagrammatic representation ((a) side view; and (b) plan view) of the wind tunnel setup. The hardware cloth indicates the origin of
the test section. The domain of the test section is 18.38 · 3.69 · 2.12 m3, respectively, for length · width · height.
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conditions exceed the critical Reynolds number required for a fully turbulent, Reynolds-number independent
flow, thereby capturing all but the smallest scales of motion in a natural scenario [35].

Our numerical model setup mimics the aim of the wind-tunnel experiment by adopting the LES approach
suitable for turbulent flows, but adds further idealizations for the sake of computational economy. The numer-
ical representation of the model building with height h = 0.1 m is placed in the center of the 6.0 · 3.7 · 0.60 m3

domain – substantially shorter and lower than in the wind tunnel – covered with a uniform resolution of
dx = dy = dz = 0.01 m, the highest practical at the time when the calculations were performed on 500 proces-
sors of an IBM BlueGene/L machine. Except for a few auxiliary sensitivity runs, the numerical simulations
assume a flat test section and parameterize the upstream roughness blocks (Fig. 2) with the surface tangential
stress proportional to the tangential flow times its norm, with a drag coefficient of CD = 0.1. Similarly, the
inflow boundary condition assumes laminar flow ½ueðzÞ; 0; 0� with ue(z) = u0 + u1ln(z) + u2ln2 (z) fitted to the
measured profile at the downwind edge of the upwind roughness blocks. Depending on the run, the time step
dt 2 ½0:00025; 0:001� s, with a total simulation time T 2 ½1:2; 4:8� s, preceded with a model spin-up time over Ts,
not necessarily equal to T. With u0 = 3.9 m s�1, the building length scale L = 2 m and the advective time scale
T0 = L/u0, T 2 ½2:3T 0; 9:4T 0�. The spanwise lateral and the upper boundaries are assumed impermeable rigid
lids, whereas open boundaries in the streamwise direction are mimicked with 0.20 m thick absorbing layers
with inverse scales am in (3) growing linearly from zero at a distance 0.20 m away from the boundary to
(0.15 s)�1 at the boundary.

Fig. 3 shows the locations of profile data taken in the wind tunnel experiment with a laser-Doppler velo-
cimeter (LDV). Note that measurements were taken not only upstream and in the wake, but also at various
locations along the rooftop and in the recesses of the building. These recesses are very narrow, on the order of
6 dx, have a complex geometry, and are at various depths. Thus this single building provides a geometry as
complex as many urban canyon settings.



Fig. 3. LDV vertical profile locations for wind tunnel experiment.

Table 1
Specifications for the two reference runs

Approach Ts (s) T (s) dt (s) b�1 Np

IMB 2.4 4.8 1.00 · 10�3 0.5dt 13.542 · 106

GCT 2.4 4.8 0.25 · 10�3 1 13.542 · 106

The first column identifies the approach, while the remaining columns list, respectively, the simulated spin-up time Ts, the total simulated
time T for time mean and fluctuation segments, the time step dt employed, the time scale b�1 of the fictitious body forcing, and the total
number of grid points Np.

640 P.K. Smolarkiewicz et al. / Journal of Computational Physics 227 (2007) 633–653
The numerical simulations are divided into two groups: runs employing the Gal-Chen and Somerville coor-
dinate transformation, hereafter GCT, and calculations on a Cartesian mesh using the immersed-boundary
approach, hereafter IMB. All calculations are performed at the maximum dt allowed by numerical stability cri-
teria. For the GCT runs, this results in a time step 3–4 times smaller than that allowed in the IMB simulations.
Each run has been conducted in 3 separate segments: a spin-up time to Ts, followed by time mean and fluctu-
ation calculations over time T. Because in the wind tunnel vertical profiles of various time-averaged quantities
were measured at 41 sites, Fig. 3, we chose to evaluate equivalent quantities at all grid points, for flexibility of
post-processing. In the time-means segment, we start the flow calculations at Ts, and calculate in addition sums
of selected fields over all time steps included in the segment, and store them to tape. In the fluctuation segment,
we restart the flow calculations again at Ts and calculate variances of selected fields using the stored time-mean
values. The averaging times in the wind tunnel experiment were �120 s (240T0), 24 times longer than the lon-
gest values of T used in the simulations (9.6T0). Although our averaging times were dictated primarily by com-
putational affordability, we note that those used in the laboratory – representative of a 7 h period under natural
conditions – tend to favor the Reynolds-averaged Navier–Stokes’ (RANS) approach. For the reader’s conve-
nience, Table 1 summarizes key aspects of the two reference runs; whereas further discussion of the immersed
boundary scheme and the role of relevant time scales is included in Appendix C.

5. Results

Fig. 4 illustrates the IMB simulation of the flow; see [36] for an animation. It displays the instantaneous
vertical velocity field w at T = 4.8 s in the central vertical xz plane and in the xy plane at z = 0.5 h – note
the 3 · exaggerated vertical scale in the xz cross-section. The corresponding GCT result is shown in Fig. 5.



Fig. 4. Instantaneous IMB vertical velocity (w) field, with flow vectors superimposed, in the central vertical plane (upper panel) and in the
horizontal plane at the half height of the building (lower panel). Isolines of w are plotted with a contour interval of 1/3 m s�1, dashed/solid
lines represent negative/positive values and zero contour lines are not shown; the reference velocity vector in the lower right corner
corresponds to 4 m s�1.

Fig. 5. As in Fig. 4 but for the GCT simulation.
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Fig. 6. Time-averagedsame as inFigs.Table 2RMS errorW A VW M X 7 . 8 7 3
Although both solutions seem qualitatively similar, there are some apparent differences. For instance, the
IMB solution evinces more activity within the building courtyard and produces a more intense but narrower
wake. Because the simulated flow is turbulent and intermittent – with the magnitude of the fluctuations com-
parable to that of the ambient flow – contrasting instantaneous results can be misleading. To better expose
global differences between the IMB and GCT solutions, Fig. 6 juxtaposes the corresponding time-averaged
Æwæ fields. Except for stronger updrafts/downdrafts at the flanks of the building in the IMB result, both results
appear to match closely, and without reference to the measurements it seems impossible to judge which solu-
tion is more realistic.

The wind tunnel LDV measured vertical profiles include: profiles of the averaged velocity components Æuæ,
Ævæ, Æwæ; the component variances, e.g. Æu 0u 0æ ” Æu � Æuææ2 as well as their sum (0.5·, viz. the kinetic energy k 0 of
velocity fluctuation); and two Reynolds’ fluxes Æu 0v 0æ and Æu 0w 0æ. With these nine profiles measured at 41 sites,
cf. Fig. 3, a detailed comparison of the various runs with the data is not possible to present here. Below we
summarize our overall experience with the simulation approaches, illustrated with selected results.

Tables 2–6 present the root mean square (RMS) error statistics for the measured first- and second-order
normalized moment variables, derived by comparison to the wind tunnel LDV measurements for both the
IMB and GCT methods at sites (cf. Fig. 3) representative of the following locations: 1 for upstream; 23 for
lateral flanks; 7 for courtyard; 11 for rooftop; and 15 for wake. The calculated RMS error of the profile is
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Table 3
As in Table 2 but for site 23 on a lateral flank

Src. u v w u 0u 0 v 0v 0 w 0w 0 k0k 0 u0v0 u0w 0

IMB 1.032 0.301 0.440 1.066 0.922 0.748 1.123 0.331 0.515
GCT 0.978 0.131 0.355 1.042 0.922 0.747 1.115 0.331 0.515
WAV 6.795 0.388 0.481 1.093 0.923 0.748 1.138 0.323 �0.517
WMX 8.329 1.008 0.670 1.166 1.015 0.872 1.169 0.400 0.560

Table 4
As in Table 2 but for site 7 in the courtyard

Src. u v w u 0u 0 v 0v 0 w 0w 0 k0k 0 u0v0 u0w 0

IMB 0.855 0.124 0.262 0.844 0.829 0.729 0.872 0.349 0.671
GCT 1.631 0.257 0.153 1.385 0.931 0.786 1.467 0.419 0.660
WAV 4.723 0.052 �0.225 1.610 0.959 0.808 1.630 0.201 �0.595
WMX 8.266 0.160 0.414 1.962 1.046 0.931 1.946 0.258 0.773

Table 5
As in Table 2 but for site 10 at a rooftop

Src. u v w u 0u 0 v 0v 0 w 0w 0 k0k 0 u0v0 u0w 0

IMB 0.717 0.108 0.254 1.023 0.776 0.738 0.972 0.414 0.674
GCT 2.165 0.143 0.235 1.446 0.996 0.887 1.537 0.239 0.520
WAV 6.086 0.078 0.378 1.660 1.098 1.002 1.696 0.186 �0.702
WMX 8.193 0.244 0.881 2.034 1.358 1.285 2.119 0.330 0.928

Table 6
As in Table 2 but for site 15 in the wake of the building

Src. u v w u 0u 0 v 0v 0 w 0w 0 k0k 0 u0v0 u0w 0

IMB 0.471 0.122 0.291 0.739 0.580 0.275 0.597 0.305 0.249
GCT 1.515 0.102 0.323 1.017 0.723 0.762 1.033 0.354 0.728
WAV 4.680 0.058 0.238 1.367 1.152 1.054 1.466 0.139 �0.816
WMX 7.783 0.233 0.731 1.655 1.267 1.169 1.660 0.343 0.951
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the average over the four grid points surrounding each site location at all vertical positions measured by the
LDV. To avoid ambiguity, we write the adopted formulae explicitly. First we evaluate
dn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nv

XNv

k¼1

ð~n� �nÞ2
vuut ð19Þ
where n refers to normalized measured profiles – e.g., Æuæ/U0 or hu0w0i=U 2
0 � N v is the number of vertical posi-

tions measured by the LDV (in general, different for each site), the tilde refers to the average over the 4 grid
points surrounding each measurement, and the overbar denotes the measured profile. Next, for the second-
order moments all numerical entries in the tables are transformed according to
dn� ¼ sgnðdnÞ
ffiffiffiffiffiffiffiffi
jdnj

p
; ð20Þ
to facilitate relating the magnitude of the fluctuations to the means. Finally, all numerical entries in the tables
are premultiplied by the factor of ten, for the sake of compactness. The first column denotes the data source,
either from calculations or measurements. Both WAV and WMX refer to wind tunnel measurements; denot-
ing, respectively, the vertically averaged and maximal values of the profile. Together, the two characteristics
aid in assessing ‘‘wiggliness’’ of fields with averages close to zero.



Fig. 7. Vertical profiles of mean velocity components in the building wake at site 15 (leewa
As illustrated in the Tables, overall, the IMB technique provides slightly smaller RMS errors for most sta-
tions, but this trend is not universal and depends on the actual location and quantity being compared. In gen-
eral, the mean profiles of the velocity components compare with measurements reasonably well for both IMB
and GCT calculations. This is illustrated in Fig. 7 that displays the normalized mean profiles of Æuæ, Ævæ, and
Æwæ at Site 15 (the leeward most site at y = 0 in Fig. 3). For the streamwise velocity component the IMB is
more accurate up to z = 3 h; whereas for the vertical velocity component, the IMB appears more accurate
above z = 2 h, while both simulations underpredict the measured weak updraft below about z = 0.5 h. This
is, however, not a global trend but only a local deviation, as at Site 12 (not shown) both calculations capture
the low-level updrafts equally well, while overpredicting the vertical velocity at z > 2 h.

Insofar as the fluctuation fields are concerned, both simulation techniques capture the magnitude and over-
all vertical structure of the measured profiles. For illustration, Fig. 8 shows, again for Site 15, profiles of veloc-
ity component variances, their sum (0.5·), and the Reynolds fluxes. Although the IMB appears more accurate
in some respects, there is no clear indication that it is uniformly superior to the GCT. Noteworthy, upwind of
the building both simulations depart from the data to the same degree, predicting, in essence, no turbulent
fluctuations. Since the amplitude of the measured fluctuations upwind of the building is roughly only twice
smaller than in the lee, this cannot be attributed to wind tunnel noise. Our attempts to mimic the background
wind-tunnel turbulence by introducing roughness blocks (cf. Figs. 1 and 2), allowing for adequate noise at the
inflow boundary, or initializing subgrid-scale e with the Æk 0k 0æ profile measured at Site 1 (at the downwind edge
of the upwind strip of roughness blocks) all failed to reproduce the measured fluctuation fields upwind of the
building. We tend to believe that this is not due to an inadequacy of numerical model per se, but due to the
unavailability of the actual initial and/or boundary conditions. Also, it should be remembered that the length
of time averaging of the simulated fields is much less than in the wind tunnel. Based on our analysis of the
experiments with shorter time averaging (not shown), longer time averages would provide closer agreement.

6. Strongly stratified flow regime

Although wind tunnel experiments of flow over blocks and other obstacles to represent buildings and street
canyons are ongoing, e.g. [37,38], their utility is limited mainly to neutral stratification and unidirectional flow.
Some stratified wind tunnel and towing tank measurements have been made, e.g. [39–41,43,42], but used sim-
plified thermal structures and elementary obstacle shapes. These configurations may not always be represen-
tative of actual atmospheric flows in urban areas. For example, Frehlich et al. [44] using lidar profiling of the
urban/suburban boundary layer in the Washington, DC area, show a wide variety of atmospheric conditions,
rd most site at x/H= 21 andy/H= 0 in Fig. 3).Solid and dashed lines are for the IMB and GCT calculations, respectively, for the four grid points surrounding the LDV wind tunnelmeasurements (open circles).
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from unstable convective conditions during the day to very stable conditions during night and early morning
hours. Stable conditions are a particularly hazardous scenario since the inhibited mixing of contaminants
implies higher and longer-lasting concentrations. Further, measurements are necessarily taken at only certain
locations within the flow, and a fully three-dimensional quantitative assessment of the flow is difficult to
achieve.

In this section we present a stably stratified case to compare and contrast to the neutral flow results given in
the previous section. Although we do not have supporting data, the favorable comparisons obtained for the
neutral case bolster our confidence in the integrity of the stably stratified results.

Elementary stratified flows with uniform ambient wind U0 and buoyancy frequency N past obstacles of
height h are characterized solely by the Froude number, Fr ” U0/Nh [45]. Of special interest is the fluid regime
with Fr [ 0.5, frequently referred to as low-Froude-number or strongly stratified flow. The distinguishing fea-
tures of such flows include separation and flow reversal at lower levels in front of the obstacle, and the for-
mation of intense vertically oriented vortices on the lee side of the obstacle [41,46,47]. Over the last two
decades, low Froude number flows have attracted the considerable attention of the geophysical fluid dynamics
community and have been the subject of numerous theoretical, observational, and modeling (both numerical
and laboratory) studies; see [48] for a succinct review. Here, we include an example of low Froude number flow
past the same pentagon-shaped building for two reasons. First, its distinguished features make it important for
understanding/estimating contaminant dispersion past large buildings in weak nocturnal boundary layer



Fig. 9. Instantaneous vertical

(the upper row) in the central verticalxzplane for IMB (left column) and GCT (right column) atT

= 234 s. The lower row showsw

in thexyplane atz

= 0.5h

. Contour intervals forw
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1, i.e., half of that inFigs. 4 and 5
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.
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flows. Second, it is a numerically challenging extension of the neutral flow studies that further amplifies the
utility of continuous mappings for representing urban structures in LES models.

In order to minimize departures from the neutral flow experiments discussed in preceding sections, we
retain the original ambient wind profile and assume stably stratified ambient potential temperature he(z) with

a constant Brunt-Väisälä buoyancy frequency N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh�1

e dhe=dz
q

¼ 80 s�1. This (rescaled) buoyancy fre-

quency N is three to four orders of magnitude larger than in natural atmospheric environments. This puts
in question the validity and utility of standard SGS turbulence models like the one adopted in (5).To circum-
vent these potential difficulties, both the IMB and GCT simulations are performed in the implicit large-eddy-
simulation (ILES) mode [49], relying solely on the numerical dissipation inherent in the nonoscillatory
transport operator LE in (14). The implicit SGS property of our NFT approach has been widely discussed
in the literature; see [17,12,50–52] and references therein. To further reduce disparities between the IMB
and GCT simulations, the GCT run employs fictitious body forces with the attenuation time scale b�1 along
the lower surface of the model �z ¼ 0 where the orography zs > 0.

With the large scale flow characterized by U0 = 4 m s�1 and N = 80 s�1, the dominant hydrostatic vertical
wavelength 2pU0/N = 0.1p m. In order to absorb both vertically and horizontally propagating gravity waves
near the model boundaries, we increase the computational domain to 8.0 · 3.7 · 0.90 m3 (but keep the uni-
form resolution dx = dy = dz = 0.01 m) while expanding the thickness of the lateral absorbers to 0.60 m
and adding an absorbing layer in the upper half of the domain. The inverse scales am in (3) for the lateral
and vertical absorbers are, respectively, (0.30 s)�1 and (0.15 s)�1 at the corresponding boundaries. The time
step is dt = 0.001 s for the IMB run, and dt = 0.00025 s for the GCT simulation. Both calculations are carried
out over 4.8 s, after which time the flow has become well developed. Because of the overall expense of the GCT
experiment, and lack of measurements for comparison, no subsequent runs were performed to calculate time-
averaged or fluctuation fields.

Fig. 9 highlights the IMB (left column) and GCT (right column) instantaneous solutions at T = 2.4 s for the
low Froude number flow. The upper row displays the vertical velocity field w in the central vertical xz plane.
The lower row shows w in the xy plane at z = 0.5 h. Comparing these results with the corresponding results for
neutral flow (Figs. 5 and 4) shows a completely different flow regime. The neutral boundary layer flows mainly
velocityw
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over the building and creates vigorous eddies in the wake; whereas the strongly stratified boundary layer flows
mainly around the building and produces large scale vertically oriented vortices in the wake. In the latter case
vertical motions are suppressed, taking the form of gravity wave fields generated by flow over the individual
partitions of the building.

Although both the IMB and GCT calculations capture the salient features of the low Froude number flows,
there are some noteworthy differences. In the IMB simulation the depth of lee eddies is slightly larger than
0.5 h – a value expected based on earlier works on low Fr number flows past smooth hills [41,46] – whereas
it is slightly smaller than 0.5 h in the GCT run. While the flanks of the building shed fine scale eddies in the
IMB experiment, they excite internal ship waves [53] in the GCT run. Furthermore, the wave field generated in
the xz center plane of the GCT run appears evanescent with the waves excited predominantly by the fine scale
building structures with a characteristic length scale �0.1 m, about three times shorter than the dominant ver-
tical wavelength. In contrast, the IMB simulation produces vertically propagating gravity waves excited at the
upwind and lee edges of primary building structure with the characteristic length scale �0.5 m. A close exam-
ination of the IMB results shows that vertical motions are suppressed in the recesses between individual cor-
ridors – a combined effect of relatively coarse resolution and a few grid intervals thick frictional boundary
layer. In contrast, vertical motions within the recesses are evident in the GCT runs. Finally, as there are no
grid points on the side walls in the GCT runs, frictional effects are suppressed there while spatial derivatives
of zs are underresolved (i.e., they enter the matrix of transformation coefficients eG as narrow spike functions).
Therefore, at least for this strongly stratified case, the flow in the recesses (equivalent to street canyons) from
the IMB simulation appears to be underdeveloped, and would require higher horizontal resolution to match
locally the GCT results. On the other hand, the wave field aloft in the GCT simulation appears to be too weak,
and requires a smoother obstacle to match the IMB result.

To investigate the cause of these discrepancies further we performed an auxiliary experiment with the build-
ing replaced by an annulus with the inner and outer radius equal to 0.5 and 1 m, respectively, but with all flow
parameters kept the same. Fig. 10 displays the results equivalent to those shown in Fig. 9, except that the
annulus in the GCT run is smoothed with a double application of a standard 1-2-1 low-pass filter. The two
solutions agree much better now. Interestingly, the frictional effects per se appear of lesser importance, as
the identical GCT simulation but with the drag force either imposed only along the top of the annulus or
turned off give a similar result.
Fig. 10. As in Fig. 9 but for the annulus.
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Having two solutions that differ in details, Fig. 9, it is only natural to ask which one is ‘‘correct’’. Without
further measurements, or reference calculations with substantially finer effective resolution – e.g. by means of
the NFT approach using an unstructured mesh [54,55] – we can only speculate that the correct result may fall
somewhere in-between. The IMB integrations appear to overemphasize the frictional boundary layer effects,
whereas the GCT calculations tend to underresolve building slopes, thus misrepresenting the long-wave portion
in the power spectrum of gravity wave forcing. Although the IMB better captures the virtual microscale wind
tunnel problem at hand, in the LES of natural stably stratified urban boundary layers a straightforward appli-
cation of the IMB approach with a Cartesian mesh would likely overpredict the thickness of the frictional bound-
ary layer, thereby making the equivalent GCT simulation with a partial-slip boundary condition preferable for
its accuracy. On the other hand, the large-scale comparability of the two results and the quadruple computa-
tional cost of the GCT simulation still makes the IMB technique an attractive tool for computational studies.

7. Concluding remarks

We described a series of numerical experiments using a representative nonhydrostatic atmospheric model,
with the aim to assess the efficacy of large scale computations for simulating natural urban boundary layer
flows. The preexisting wind tunnel measurements of neutral flow past an elaborate scale model of the Penta-
gon building offer a rare opportunity to validate the predictive ability of numerical approximations to capture
the statistical nature of atmospheric flows past complex structures. Here, we compared two distinct
approaches: use of the classical terrain-following coordinate transformation of Gal-Chen and Somerville [4]
(GCT) common in meteorological models; and an immersed-boundary approach (IMB), proven in many
areas of computational fluid dynamics [7], in which fictitious body forces mimic the presence of complex
obstacles embedded in a regular Cartesian grid. The common denominator of the two methods is their relative
simplicity in circumventing the imposition of an explicit internal-boundary condition for elliptic problems in
incompressible-type fluid models. The comparison of the two methods against the wind tunnel measurements
shows that both provide sound results but the IMB technique is more efficient due to its less stringent com-
putational stability requirements.

Although we judge the outcome of this study encouraging, we recognize that extrapolation of our results to
natural scenarios should proceed with caution. Notably, our straightforward IMB employs effectively no-slip
boundary conditions at the building walls, whereas the GCT is more flexible in admitting partial-slip drag
laws. In contemporary meteorological LES models posed on structured grids, the IMB will tend to overpredict
the thickness of frictional boundary layers, thus effectively smoothing the obstacle structure and obscuring the
flow details in street canyons. More sophisticated IMB schemes can be designed, but at the price of loosing the
simplicity of the approach. The problem gets even further complicated for thermally stratified flows, where the
IMB offers little flexibility with boundary conditions for heat transfer. Consequently, we speculate that in
many natural flow applications the GCT approach will offer superior accuracy, thereby offsetting the benefits
of IMB’s lower computational cost. Notwithstanding, the simplicity of the latter allows for easy implementa-
tion in standard atmospheric models, thus offering a choice of methods as well as their hybridization for rep-
resenting urban structures in complex terrain.

An important byproduct of this study – urban flows aside – is a demonstration that continuous mappings,
such as the Gal-Chen and Somerville transformation, are not inherently limited to gentle slopes. An estab-
lished belief in the atmospheric CFD community is that the terrain-following coordinate transformation fails
above certain slopes (circa ten, or a few tens of degrees depending on the source of information). Here we per-
formed calculations with slopes exceeding 80�, and demonstrated their soundness. Inasmuch as we are not in a
position to comment why continuous mappings fail in other applications, we commented on the numerical
particulars of our approach (and referred the interested reader to earlier publications for more technical
details) that may be responsible for the success of our implementation. These particulars include formulation
of the elliptic pressure equation (18), deriving pressure boundary conditions along curvilinear boundaries
(Appendix B) together with selecting a suitable nonsymmetric solver [27–29], and calculation of the transfor-
mation coefficients by exploiting the fundamental tensor identities [14,15,31]. We hope this information will
assist the reader interested in using terrain-following coordinate systems to represent steep orography in com-
putational model for atmospheric/oceanic flows.
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The technical ability of handling increasingly steep slopes raises an interesting question at the very roots of
numerical analysis: ‘‘what happens as the grid resolution tends to zero?’’ Clearly, there can be no convergence
in the standard functional sense, as the coordinate transformation (9) becomes problematic in the vertical-wall
limit. A formalist might argue that the model solution space is not complete, because for any fixed and suf-
ficiently smooth obstacle-shape the solutions must converge as implied by the underlying control-volume num-
erics; e.g. at the second-order rate as the flow becomes laminar.4 However, for the class of high-Reynolds
number flows discussed in this paper, the formal convergence is a moot issue, as the affordable resolution
is still far from that limit and the only convergence one may demand from LES is for the statistics.5 The
grid-spacing of 0.01 m appears to resolve well the larger scales of the forcing – note little variability of the
average profiles in points surrounding the measurement site in Figs. 7 and 8, and their reasonable compara-
bility for different methods of representing the edifice – but it is marginal, or even turns out to be inadequate,
where small scales do not average out from statistics (cf. Fig. 9). Because we are not aware of any relevant
alternate results available for further comparison, we investigate the strengths, weaknesses and avenues for
improvement of the advocated methods in a separate study [56], using simple building shapes and flow scenar-
ios documented in the literature. The summary of our findings will be reported in future publications.
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Appendix A. MPDATA

In its basic form, MPDATA is sign preserving, fully second-order accurate, and conservative. A variety of
options have been documented that extend MPDATA to full monotonicity preservation, to third-order accu-
racy, and to fields that do not preserve sign (such as momentum). Unlike most nonoscillatory methods,
MPDATA is based directly on the convexity of upwind advection – i.e., the numerical solutions remain
bounded by surrounding local values from the preceding time step, given a uniform advecting flow and ade-
quately limited temporal increment; for nonuniform flow a weaker condition of sign preservation can be
assured – rather than on the idea of flux limiting. In practical terms, the algorithm consists of a series of donor
cell steps; the first step provides a first-order accurate solution while subsequent steps compensate higher-order
truncation errors, derived analytically from a modified-equation analysis of the upwind scheme. To illustrate,
an elementary M-dimensional advection problem ow/ot + $Æ(wv) = 0 – where w is a scalar field advected with
an arbitrary flow v – yields the MPDATA solution [18] written compactly on a regular grid as
4 Fo
equatio

5 Fo
wðkÞi ¼ wðk�1Þ
i �

XM

I¼1

F wðk�1Þ
i ;wðk�1Þ

iþeI
; V IðkÞ

iþ1=2eI

� �
� F wðk�1Þ

i�eI
;wðk�1Þ

i ; V IðkÞ
i�1=2eI

� �h i
;

where: i � ði1; . . . ; iMÞ denotes a location on the grid; eI is the unit vector in the Ith of M spatial directions; F is
the donor-cell flux function that takes the value of either the first or second argument depending on the sign of
the normalized advective pseudo velocity VI in Ith direction; integer and half integer indices correspond to the
cell centers and edges respectively; and k ¼ 1; . . . ; IORD numbers the MPDATA iterations such that
r a demonstration see [55] where an MPDATA-based NFT approach has been employed for integrating compressible Euler
ns on unstructured meshes.

r a demonstration of the LES convergence of the EULAG’s results see [50].
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wð0Þ � wn; wðIORDÞ � wnþ1

V Iðkþ1Þ ¼ V IðVðkÞ;wðkÞ;rwðkÞÞ; V Ið1Þ
iþ1=2eI

� vI jnþ1=2
iþ1=2eI

dt
dxI

:

Here, n and n + 1 denote temporal levels tn+1 = tn + dt, and dxI denotes spatial grid increment in the Ith
direction.

Appendix B. Pressure boundary conditions

Because curvilinear boundaries are notorious for inhibiting the convergence of Krylov-subspace methods
[32], careful design of the discretized boundary conditions may dictate the overall model performance. Our
approach in EULAG exploits the regularity of the boundary-fitted coordinate transformation (9) at the very
heart of the GCR solver. Below we highlight the essential steps that may be useful for other model designs.

Consider first an archetype iteration for the elliptic problem in (18)
/kþ1 ¼ /k þ bkrk; ð21Þ

where, / is a shorthand for p00ji, k numbers the iterations, b is a coefficient (constant at any given k), and r

denotes the residual error, i.e., the actual value of the l.h.s. of (18) for p00jk. For either Dirichlet or Neumann
boundaries, the recurrence relation (21) implies, respectively,
/kþ1
B ¼ /k

B þ bkrk
B; ð22Þ

n �Grad/kþ1jB ¼ n � Grad/kjB þ bkn �Grad rkjB; ð23Þ

where subscript B refers to the boundary values, and the Ith component
GradI ¼
X
J¼1;3

CIJ o

o�xJ
; ð24Þ
with coefficients CIJ depending on all the coordinates; see Appendix A in [13] for a complete development. Eq.
(24) refers to the operator manipulations in (18) – as the latter may be thought loosely of as Div � �vs ¼ 0 with
�vs ¼ �v�Grad/; ð25Þ

where �v symbolizes the explicit part. The recurrences (22) or (23) imply that if the boundary conditions were
satisfied at the preceding iteration, they will be satisfied at the subsequent iteration, given that the boundary
conditions on r or Grad r are homogeneous. Thus, to ensure the correct boundary conditions throughout the
iteration process, it is important to satisfy them from the outset – i.e., at the initialization of the iteration loop,
and to maintain the equivalent homogeneous boundary conditions while computing directional vectors, resid-
ual errors, and solution-error estimates that enter advanced Krylov-subspace solvers; see [33,34] for tutorials.
In particular, noting that the Dirichlet boundary conditions for normal solenoidal velocities n � �vs

B ¼ V B [14]
imply Neumann conditions for pressure
n �Grad/jB ¼ n � �v� V B ð26Þ

one can express the boundary pressure gradient term in (25) with (26), thereby assuring that the correct
boundary conditions are applied at the initialization of the iteration loop. In the iterations that follow, the
corresponding gradient term of the residual error, directional vectors, etc., must be set to zero.

On general curvilinear grids implementing (26) may be cumbersome, because each velocity component in
(25) shares all three partial spatial derivatives. We note, however, that among nine coefficients CIJ, the diag-
onal entries CII never vanish regardless of the complexity of the mapping in (1). Consequently, at solver ini-
tialization, we evaluate all partial derivatives explicitly from the pressure field available on the grid – e.g. from
the previous time step of the model – except for the ‘‘diagonal’’ partial derivatives at the model boundaries;
e.g. o/=o�z at �z ¼ 0;H 0, or o/=o�x at �x ¼ 0; LX . The diagonal boundary derivatives are computed from (26) with
the explicit off-diagonal terms, and are implemented consistently in all three components of (25). At the
domain edges there are two diagonal derivatives available, while all three derivatives are diagonal at the
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domain corners. Within the iteration loop, we do the same for the residual error, directional vectors, or solu-
tion error estimate: at the boundaries, the diagonal derivatives are computed from the homogeneous boundary
conditions, while all the others from the preceding iteration. Formally, this is equivalent to admitting within rk

on the r.h.s. of (21) the diagonal partial derivatives at the boundaries taken at k + 1, i.e., implicit.

Appendix C. Immersed-boundary scheme; further details

Here, we motivate our choice of the particular form of the fictitious body forcing in governing Eqs. (3)–(5)
and of the inverse time scale b used in calculations summarized in Table 1.

Consider the integral form of an elementary ODE describing a forced damped harmonic oscillator
Fig. 11
A = 1/
dw
dt
¼ �c

Z t

0

wds� bwþ A sinðxtÞ; ð27Þ
an archetype for many immersed boundary schemes [8]. For consistency with the NFT fluid model algorithm
(14), we assume Crank–Nicholson time discretization of (27)
wnþ1 ¼ ŵþ 0:5dtRnþ1; ŵ � wn þ 0:5dtRn ð28Þ

where
Rn ¼ �cI nðwÞ � bwn þ A sinðxtnÞ; I nðwÞ � dt
Xn

k¼1

0:5ðwk�1 þ wkÞ ð29Þ
Noting that I nþ1ðwÞ ¼ I nðwÞ þ 0:5dtðwn þ wnþ1Þ, (28) can be rewritten as
wnþ1 ¼ ^̂w� 0:5dtðbþ 0:5dtcÞwnþ1 ð30Þ

with the explicit part

^̂w ¼ ŵþ 0:5dt½A sinðxtnþ1Þ � cðI nðwÞ þ 0:5dtwnÞ�. Because
^̂w does not depend on wn+1,

the closed-form trapezoidal integral of (27) takes the compact form
wnþ1 ¼ ^̂w=½1þ 0:5dtðbþ 0:5dtcÞ� ð31Þ

Instead of programming an immersed-boundary scheme with arbitrary c and b into the fluid code, we em-
ployed our archetype model ‘‘off line’’, to test the benefits of various choices of c and b. With the goal of
damping the flow to stagnation (within the body of building) in OðdtÞ, we considered b�1 � OðdtÞ; see
Fig. 11 for an illustration. Within this range we found the solution behavior insensitive to the choice of c. Con-
sequently, in the EULAG code we neglect the integral term in (27), thus assuming c ” 0.

With c ” 0, (31) can be written explicitly as
wnþ1 ¼ wnð1� 0:5dtbÞ þ dtA cosðxdt=2Þ sinðxtnþ1=2Þ
1þ 0:5dtb

ð32Þ
. Example of integrating (27) with an implicit second-order-accurate scheme (31). Here, dt = 1/1000, c = 2p/(2dt), x = 2p/(200dt),
(200dt), w(t = 0) = 1, and b�1 = 40dt (left plate) or b�1 = 0.5dt (right plate); t and w are the abscissa and ordinate, respectively.
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In the absence of external forcing, A ” 0, and b�1 = 0.5dt damps the solution to zero within a single time step;
shorter time scales give stable but oscillatory solutions. In general, for non-trivial external forcings there may
be a conflict between the two terms in (32). While the first term favors b�1 J 0.5dt, the contribution from the
second term diminishes rapidly as b�1! 0; in such a case, a variable in time b may be preferred. In the appli-
cation at hand, however, the primary external forcing is the pressure gradient that responds instantaneously to
flow departures from solenoidal. In addition to the large scale components reflecting overall flow development,
in turbulent flows it can have a rapidly oscillating component that reflects local small-scale adjustments. In
(32), the large scale components correspond to A = w0/T and x = 2p/T with T	 dt, whereas the rapidly oscil-
lating part corresponds to A � Oðw0=dtÞ and x 6 2dt. In both cases setting b�1 = 0.5dt is effective, as illus-
trated by the simple archetype model and verified by LES in Section 5.

Appendix D. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/
j.jcp.2007.08.005.
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